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Comparison of the structures of coesite and felspar shows (1) the usefulness of a model in which all 
04 tetrahedra are taken as perfectly regular and identical in size, the position and chemical nature 
of the central cation being ignored, (2) the possibility of order-of-magnitude correlation of lattice par- 
ameters with certain position parameters of O, by relating both geometrically to tilts of regular tetra- 
hedra of the above kind, (3) evidence that the 'crankshaft' feature of the structure is not subject to a 
tensile stress in coesite, as it is in felspar, (4) an explanation why the felspar framework is not found 
in any polymorph of Si02. 

In their study of coesite, a high-pressure form of silica, 
Zoltai & Buerger (1959) noted a resemblance between 
its structure and that of felspar. The purpose of this 
paper is to examine the nature of the relationship. Only 
an outline of the geometry will be given here; a more 
detailed treatment will be given in another paper. 

Fig. 1 shows half the structure of the potassium fel- 
spar, sanidine, (omitting K a toms) in  projection on 
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Fig. 1. 'Corrugated layer' of sanidine lying between heights 
y = 0  and y=½. Heights of atoms are shown as multiples 
of b/100. Oa(2) atoms are shown by circles; K atoms are 
omitted. 

(010). The other half is derived by reflexion in mirror 
planes at y = 0 , y = ½ .  If the structure could be cut in 
two at these planes, and each piece moved by ½c relative 
to the piece above or below, the arrangement shown 
in Fig.2 would be obtained. Atoms OA(2) have been 
cut in half; those at height y = 0  are shown, while those 
at height y = ½ have been omitted for clarity. If now, by 
suitable tilting of tetrahedra without breaking any 
bonds, half atoms such as P and Q can be made to join 
up, the coesite structure will result. We note the exis- 
tence of a centre of symmetry midway between P and 
O. 

Formally, the operation is simply one of replacing 
the mirror plane of the felspar by a c-glide plane, and 
moving OA(2) to a centre of symmetry lying on it, 
followed by minor adjustments of all the atomic po- 
sition parameters. The 'corrugated layer', the part of 
the structure between heights 0 and 3, is nearly the 
same in both structures, and has the same symmetry. 
It is shown schematically in Fig. 3. 

The origin and axes of reference chosen by Zoltai & 
Buerger do not correspond to the conventional felspar 
axes. The latter are more convenient for general use. 
Both sets are shown in Fig. 3. Conversion from Zoltai 
& Buerger's axes to felspar axes is done with the fol- 
lowing matrices: 

for lattice parameters, 
110\ 
ool/ ; 
010/ 

for atomic coordinates, 
100\ 
o o l / ,  
110] 

followed by a change of origin to (3, 0, ¼). 
Data for coesite expressed on felspar axes are given 

in Table 1. The one-to-one correspondence between 
atoms is obvious. The felspar nomenclature will be 
used for them in what follows. 
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Table l. Comparison of sanidine and coesite* 

(a) Lattice parameters 

Coesite 
(axes of Zoltai & Buerger) 

a 7.17A 
b 7"17 
c 12-38 

0 
0 

y 120-0 ° 

(b) Atomic position parameters 
Coesite 

~xes of Zoltai Felspar axes 
& Buerger 

0.5063 0.0063 
0.5388 Si2 0.1576 
0.1576 0.2175 

0"1403 i '6403 
0"0735 Sil 0-1084 
0"1084 0"3168 

0"5 0 
0"75 O2 0"1166 
0"1166 0 

o i.5 
0 01 0 
0 0"25 

0-3080 i '8080 
0-3293 04 0"1030 
0" 1030 0.2287 

Table 1 (cont.) 

0"4877 i-9877 0-0341 
Coesite Sanidine 0"5274 05 0.2878 0"3100 

(felspar axes) 0.2878 0.2103 0-2575 

7.17 ~ 8.56/~ 0.7306 0.2306 0.1792 
12-38 13.03 0.5595 03 0.1256 0.1269 
7.17 7.18 0.1256 0.4211 0.4025 
0 0 

120.0 ° 116.0 ° * Note  added in p r o o f : -  These coordinates have been super- 
0 0 seded by a new refinement by Arika & Zoltai (1969). The dig 

Sanidine 
,,~ 

0-0097 
0.1850 T1 
0.2233 

i.7089 
0.1178 T2 
0.3444 

0 
0.1472 
0 

i.6347 
0 
0.2858 

i.8278 
0-1469 OB 
0"2244 

o~(1) 

0.4(2) 

O U  

OD 

ferences are however too small to affect the present argument, 
though significant in other respects. Araki & Zoltai have how- 
ever chosen different axes of reference; these, and changes in 
Table 1 resulting from the new work, are recorded in the 
Appendix. 

We now turn back to consider the character of the 
tilts which will allow P and Q in Fig. 2 to join up. We 
are really only concerned with the corners of tetra- 
hedra, not with the positions of the Si or A1 atoms 
within them. We make a simplifying assumption: 

that, to a sufficiently good approximation, the tetra- 
hedra (as defined by their 0--0 edges) are all regular, 
rigid, and identical in size. 

We shall find that this provides a convenient working 
rule, whose validity can be tested by results. What we 
are really saying is that effects due to variation in tetra- 
hedron size or shape are on the whole an order of 
magnitude smaller than those with which we are here 
concerned. 
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Fig.2. 'Corrugated layer' of sanidine operated on by c-glide plane. Full lines: corrugated layer between y = 0  and y = ½  as in 
Fig. 1. Dotted lines: corrugated layer between y = 0  and y = - ½ .  Circles are 0.4(2) atoms at y = 0 ;  other OA(2)'s and some 
parts of the lower layer lying near the Tl's in projection have been omitted for clarity. 
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Felsl: 

Fig. 3. Schematic diagram of 'corrugated layer' shown in Fig. 1, 
with lines joining centres of te trahedra;  oxygen a toms omit- 
ted. Squares with heavy lines are at heights near y=0 .35 ,  
those with light lines near y=0 .15 .  Unit  cells are shown 
using the conventional  felspar axes and the coesite axes of 
Zoltai & Buerger (1959), the third axis being vertically up- 
ward from the paper  in both cases. For  coesite, to obtain 
the axes of Araki & Zoltai (1969), the directions of a and b 
should be reversed (i.e. the origin taken at the top r ight-hand 
corner-'and b relabelled c). 

Inspection of Fig.2 shows that the tilt needed to 
make Q approach P is a hingeing of tetrahedron STUQ 
about its edge ST, which lies nearly in the direction (o) 
[001]. (This is a tetrahedron of T2 type, in felspar nota- 
tion.) If it hinges so that R, U, and Q all come upward, 
the projected distance from ST to U shortens, while 
that to Q lengthens. Suppose all T2 tetrahedra behave 
in a symmetry-related way, while the 7"1 tetrahedra 
(such as that centred at V) remain fixed in orientation. 
Then the whole chain of four-rings running parallel to 
[001], WoWo', retains its unit of length and its orienta- 
tion unaltered, but can move in any direction as re- 
quired relative to a neighbouring chain, e.g. WW'. Short- 
ening of the projected distance from the hinge to U 
serves to pull the two chains closer together in the x* 
direction; lengthening of the projected distance to Q 
allows Q to approach the plane x=½, which is marked 
by the atom W, a n  OA(1) atom located in a special (b) 
position on a diad axis. Because of the centre of sym- 
metry, P and Q reach the plane x=½ together; minor 
adjustments (too small to consider at the present stage 
of discussion) bring them into coincidence on the plane. 

The effects of this tilt on the overall dimensions of 
the unit cell can be calculated. Obviously there will be a 
decrease in a sin/~; we shall show that there is also a 
decrease in b, while c remains unaltered. 

For calculating changes of tilt and of lattice param- 
eters, we take a slightly simplified model, in which 

each 7'1 tetrahedron has its base exactly parallel to 
(010) with one edge perpendicular to (100), and each 
T2 tetrahedron has an edge such as ST exactly parallel 
to [001]. Part of this structure is shown in Fig. 4(a) and 
(b). In 4(a), it can be seen that the lattice vector a/2 is 
WoW, which is the sum of projected vectors WoN, NU, 
and UW. Of these, only NU changes with tilt. It gives 
rise to a change in a sinfl, while a cosfl is unaffected. In 
Fig.4(b), it can be seen that we are concerned with the 
horizontal component of NU. Similarly, a change in b 
is a change in the vertical component of QQ' [Fig. 4(b)], 
and this is equal to a change in the vertical component 
of QU+N'Q', i.e. of NU, since UN" is unaltered and 
N'Q' is, in magnitude and direction, the mirror image 
of NQ. 

Assuming all tetrahedra have edge length 2-65 ~ ,  the 
slope of NU can be calculated from the experimental 
difference between the y parameter of U (Oc) and the 
mean of the y parameters of S and T (Oz) and OB). The 
angle between NU and the vertical is thus found to be 
72 °. From the geometry of the regular tetrahedron, the 
projected angles at N, U, and Q are 70, 55, 55 °; hence 
UQ is at 17 ° to the vertical. Now in coesite the line UQ 
must be vertical (Fig. 5), since Q, like U, must be in the 
plane x=½; hence the angle of tilt needed to change 
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Fig.4. Projections of parts of idealized felspar structure (a) on 

(010), (b) normal  to [001]. The lettering matches that  of 
Fig. 2; centres of tetrahedra are marked in (b) but not  in (a). 
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Fig. 5. Projections of parts of idealized structure, with tilt as 
for coesite: otherwise as Fig.4. 

the nature of the differences between structures. In this 
paper we consider only the tilt discussed above. 

The task is to try and explain the differences between 
the frameworks of sanidine and coesite, correlating 
them with the presence or absence of the large cation 
K. We begin by recognizing that differences between 
individual tetrahedra containing Si or A1 are negligible, 
and that even for the structure as a whole the effect of 
Si/A1 replacement means only a difference of about 
2 % in the average O-O edge length, and this too can be 
neglected. 

We have now shown that the main differences in the 
coesite and sanidine frameworks are due to two fea- 
tures: (1) there is a different linkage between corrugated 
layers through 0.4(2), such that two T2-OA(2) bonds 
are related in sanidine by a mirror plane, in coesite by 
a symmetry centre; (2) tetrahedra /'2 have different 
tilts in the two structures. We proceed to examine the 
implications of (2). 

Consider the characteristic 'crankshafts' of the 
felspars - strips running parallel to [100] and made up 
of horizontal four-tings joined to vertical four-tings, 
as shown schematically in Fig. 6. ('Vertical' is here ta- 

(a) 
Y 

X <  

from felspar to coesite is 17 °. (It is not, of course, sug- 
gested that this change actually occurs; we merely pie- 
ture it as an aid to calculating differences between the 
actual end members.) From the relations in the last 
paragraph we predict a decrease in a sinfl of 0.60 A and 
a decrease in b of 1.20 A; also, since the change in 
a cos,6 is zero, an increase in fl of 2 °. The observed val- 
ues are - 1.5 A in a sin/Y, - 0.6 A in b, +4  ° in ,8. The 
predicted changes are thus of the tight sign; order-of- 
magnitude agreement is reasonable considering the 
simplicity of the assumptions. The inclusion of other 
tilts might be expected to improve the agreement, but 
detailed treatment doing so will be left to another 
paper. 

What has been done here is to show that a model 
involving only a simple change of tilt of tetrahedra can 
be correlated on the one hand with certain atomic 
parameters, on the other with lattice dimensions; and 
that errors implicit in the assumption of rigid regular 
tetrahedra, and errors arising from the neglect of other 
and more complicated tilts, are not so large as to destroy 
the possibility of making useful order-of-magnitude 
calculations. The tilts themselves have still to be ex- 
plained, but this approach, by allowing each to be 
examined separately, offers more hope of explaining 

(b) i a sin p (felspar) I 

i l IV I i 
j J l  
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Fig. 6. 'Crankshaft '  part of structure. Lines show joins between 
tetrahedral atoms, oxygen atoms being omitted (of. Fig.2). 
(a) Perspective view, schematic. (Actual four-rings are not  
planar, nor are their sides exactly parallel to the axes.) (b) 
Projection perpendicular to [0011: (i) for felspar, (ii) for 
coesite [corresponding to Figs.4(b) and 5(b) respectively]. 
The same lettering is used for the same atoms throughout. 
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ken to mean 'parallel to [010]', and 'horizontal'  to mean 
'in the (010) plane.') It is plain that the greater the tilt 
of the T2 tetrahedron from its coesite position, the 
greater the inclination to the vertical of the links such 
as R V and JV. Tilting of the tetrahedra thus implies a 
lengthwise pulling-out of the crankshaft strips. (There 
is a shear as well as an extension, because the strips are 
parallel to [100] whereas the effects of tilt are in the 
plane normal to [001], but we need not consider that 
here.) 

Now it has been shown (Megaw, Kempster & Rado- 
slovich, 1962; Fleet, Chandrasekhar & Megaw, 1966) 
that the crankshaft strip is, in all felspars, under a 
tensile stress, whose source is in the pair of large cations, 
in this case K atoms, jammed in so that they lie in a 
line between two OA(2)'s. The electrostatic repulsion 
between the two K's produces a thrust in the OA(2)-K- 
K-OA(2) 'strut', which is balanced by the tension in the 
crankshaft 'tie'. This was verified by detailed exami- 
nation of the bond-angle strains in the crankshaft (i. e. 
the deviations from a tetrahedral bond-angle) for all 
felspars for which data were available; irrespective of 
differences of symmetry or composition, they were all 
found to be of the sense corresponding to a tensile 
stress in the crankshaft. It is therefore no surprise to 
find that in coesite, where there are no cation 'struts' 
to hold the crankshaft extended, it contracts to an 
unstrained length. Fig.6(b) compares the actual shape 
of the crankshaft (the joins not included in the diagram 
being related to those that are by symmetry). JVo and 
R V lie in the plane of projection. The more pulled-out 
configuration in felspar is easily seen. 

From this discussion it can be seen why the two 
materials KA1Si308 and SiO2 adopt the two different 
structures. Obviously the coesite structure is impossible 
for KAISi3Os, because there are no cavities in it of 
suitable size for K. At first sight, however, there ap- 
pears no reason why SiO2 should not occur with the 
felspar structure. Closer examination shows the diffi- 
culties. If the T2 tetrahedra retained the coesite tilt of 
approximately zero, while being related across a mirror 
plane, the bond angle at OA(2) would be 110 °, which 
empirical evidence suggests is too small for stability. 
In felspars, this difficulty is avoided by introducing Tz 
tilts, at the cost of introducing also tensile stress in the 
crankshaft; for SiO2 this remedy is impossible, because 
of the lack of compensating cation struts. In felspars, 
the linkage of corrugated layers across a mirror plane 
through OA(2) not only provides cavities of sufficient 
size for the cations but also allows their mutual electro- 
static repulsion to be counterbalanced by the elastic 
tensions of the layers, applied to them through OA(2). 
In SiO2 there are neither cations requiring large cavities 
nor electrostatic repulsions by which a stress can be 
applied to the layers to tilt the T2 octahedra, and there- 
fore there is neither the demand nor the opportunity 
for mirror symmetry at OA(2). 

This discussion has not yet mentioned the very 
unusual feature of the coesite structure which results 

from centrosymmetry at O.4(2), namely the straight- 
line configuration of T2-OA(2)-Tz. From the work of 
Liebau and others (see Liebau, 1961) it is now generally 
recognized that straight-through links are not energet- 
ically favourable, and occur less often than the older 
work on silicates would have suggested, though their 
existence has been confirmed in some structures [e.g. in 
thortveitite Sc2SiO7 (Cruickshank, Linton & Barclay, 
1962)]. In coesite, it may be favoured by the high- 
pressure conditions under which the structure is for- 
med. From our present point of view, it can only be 
said that a normally unstable arrangement in the inter- 
layer link at OA(2) is the price the coesite structure has 
to pay for what our discussion suggests to be a favour- 
able, unstrained, condition within the layers. 

More detailed discussion of the geometry of the 
structures, with an analysis of the different kinds of 
possible tilts and their effects, and comparisons of 
different felspars, will be left to later papers. 

APPENDIX 

For their new refinement, Araki & Zoltai (1969) have 
used axes of reference derived from those of Zoltai & 
Buerger (1959) by the matrix ]00/001/0]0; and some, 
but not all, of the prototype atoms (representative 
atoms of each equipoint) are differently chosen. Table 
2 gives the refined atomic parameters for the same 
prototype atoms as Table 1, (a) referred to Araki & 
Zoltai's 1969 axes, (b) referred to the felspar axes of 
Fig.3. (Other parts of Table 1 remain unchanged.) 

Table 2. A tomie position parameters of  coesite 
referred to (a) Araki & Zoltai's axes, 

(b) felspar axes 

(a) (b) (a) (b) 
0.4934 0"0066 0"6891 T'8109 
0.1577 Si2 0"1577 0-1036 04 0.1036 
0"4596 0"2162 0"6755 0"2364 

0"3590 T.6410 0.5193 T'9807 
0"1084 Sil 0"1084 0.2882 05 0.2882 
0.9274 0"3184 0.4788 0"2095 

1/2 0 0.2670 0"2330 
0"1172 02 0"1172 0.1238 03 0.1238 

1/4 0 0.4418 0"4248 
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